Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2227725

ABSTRACT

BACKGROUND: Pulmonary edema is a central hallmark of Acute Respiratory Distress Syndrome (ARDS). Endothelial dysfunction and epithelial injury contribute to permeability but their differential contribution to pulmonary edema development remains understudied. METHODS: Plasma levels of surfactant protein-D (SP-D), soluble receptor for advanced glycation end products (sRAGE) and angiopoietin-2 (Ang-2) were measured in a prospective, multicenter cohort of invasively ventilated patients. Pulmonary edema was quantified using the radiographic assessment of lung edema (RALE) and global lung ultrasound (LUS) score. Variables were collected within 48 hours after intubation. Linear regression was used to examine the association of the biomarkers with pulmonary edema. RESULTS: In 362 patients, higher SP-D, sRAGE and Ang-2 concentrations were significantly associated with higher RALE and global LUS scores. After stratification by ARDS subgroups (pulmonary, non-pulmonary, COVID, non-COVID), the positive association of SP-D levels with pulmonary edema remained, while sRAGE and Ang-2 showed less consistent associations throughout the subgroups. In a multivariable analysis, SP-D levels were most strongly associated with pulmonary edema when combined with sRAGE (RALE score: ßSP-D = 6.79 units/log10 pg/mL, ßsRAGE = 3.84 units/log10 pg/mL, R2 = 0.23; global LUS score: ßSP-D = 3.28 units/log10 pg/mL, ßsRAGE = 2.06 units/log10 pg/mL, R2 = 0.086), while Ang-2 did not further improve the model. CONCLUSION: Biomarkers of epithelial injury and endothelial dysfunction were associated with pulmonary edema in invasively ventilated patients. SP-D and sRAGE showed the strongest association, suggesting that epithelial injury may form a final common pathway in the alveolar-capillary barrier dysfunction underlying pulmonary edema.

2.
J Clin Med ; 12(4)2023 Feb 04.
Article in English | MEDLINE | ID: covidwho-2225420

ABSTRACT

INTRODUCTION: The Radiographic Assessment of Lung Edema (RALE) score provides a semi-quantitative measure of pulmonary edema. In patients with acute respiratory distress syndrome (ARDS), the RALE score is associated with mortality. In mechanically ventilated patients in the intensive care unit (ICU) with respiratory failure not due to ARDS, a variable degree of lung edema is observed as well. We aimed to evaluate the prognostic value of RALE in mechanically ventilated ICU patients. METHODS: Secondary analysis of patients enrolled in the 'Diagnosis of Acute Respiratory Distress Syndrome' (DARTS) project with an available chest X-ray (CXR) at baseline. Where present, additional CXRs at day 1 were analysed. The primary endpoint was 30-day mortality. Outcomes were also stratified for ARDS subgroups (no ARDS, non-COVID-ARDS and COVID-ARDS). RESULTS: 422 patients were included, of which 84 had an additional CXR the following day. Baseline RALE scores were not associated with 30-day mortality in the entire cohort (OR: 1.01, 95% CI: 0.98-1.03, p = 0.66), nor in subgroups of ARDS patients. Early changes in RALE score (baseline to day 1) were only associated with mortality in a subgroup of ARDS patients (OR: 1.21, 95% CI: 1.02-1.51, p = 0.04), after correcting for other known prognostic factors. CONCLUSIONS: The prognostic value of the RALE score cannot be extended to mechanically ventilated ICU patients in general. Only in ARDS patients, early changes in RALE score were associated with mortality.

3.
Diagnostics (Basel) ; 12(10)2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2099390

ABSTRACT

BACKGROUND: We studied prone positioning effects on lung aeration in spontaneously breathing invasively ventilated patients with coronavirus disease 2019 (COVID-19). METHODS: changes in lung aeration were studied prospectively by electrical impedance tomography (EIT) from before to after placing the patient prone, and back to supine. Mixed effect models with a random intercept and only fixed effects were used to evaluate changes in lung aeration. RESULTS: fifteen spontaneously breathing invasively ventilated patients were enrolled, and remained prone for a median of 19 [17 to 21] hours. At 16 h the global inhomogeneity index was lower. At 2 h, there were neither changes in dorsal nor in ventral compliance; after 16 h, only dorsal compliance (ßFe +18.9 [95% Confidence interval (CI): 9.1 to 28.8]) and dorsal end-expiratory lung impedance (EELI) were increased (ßFe, +252 [95% CI: 13 to 496]); at 2 and 16 h, dorsal silent spaces was unchanged (ßFe, -4.6 [95% CI: -12.3 to +3.2]). The observed changes induced by prone positioning disappeared after turning patients back to supine. CONCLUSIONS: in this cohort of spontaneously breathing invasively ventilated COVID-19 patients, prone positioning decreased inhomogeneity, increased lung volumes, and improved dorsal compliance.

4.
Am J Trop Med Hyg ; 105(6): 1490-1497, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1478301

ABSTRACT

Lung ultrasound (LUS) can be used to assess loss of aeration, which is associated with outcome in patients with coronavirus disease 2019 (COVID-19) presenting to the emergency department. We hypothesized that LUS scores are associated with outcome in critically ill COVID-19 patients receiving invasive ventilation. This retrospective international multicenter study evaluated patients with COVID-19-related acute respiratory distress syndrome (ARDS) with at least one LUS study within 5 days after invasive mechanical ventilation initiation. The global LUS score was calculated by summing the 12 regional scores (range 0-36). Pleural line abnormalities and subpleural consolidations were also scored. The outcomes were successful liberation from the ventilator and intensive care mortality within 28 days, analyzed with multistate, competing risk proportional hazard models. One hundred thirty-seven patients with COVID-19-related ARDS were included in our study. The global LUS score was associated with successful liberation from mechanical ventilation (hazard ratio [HR]: 0.91 95% confidence interval [CI] 0.87-0.96; P = 0.0007) independently of the ARDS severity, but not with 28 days mortality (HR: 1.03; 95% CI 0.97-1.08; P = 0.36). Subpleural consolidation and pleural line abnormalities did not add to the prognostic value of the global LUS score. Examinations within 24 hours of intubation showed no prognostic value. To conclude, a lower global LUS score 24 hours after invasive ventilation initiation is associated with increased probability of liberation from the mechanical ventilator COVID-19 ARDS patients, independently of the ARDS severity.


Subject(s)
Airway Extubation , COVID-19/pathology , COVID-19/therapy , Lung/pathology , SARS-CoV-2 , Ultrasonography , Aged , Cohort Studies , Female , Humans , Internationality , Male , Middle Aged
5.
Lancet Respir Med ; 9(9): 957-968, 2021 09.
Article in English | MEDLINE | ID: covidwho-1275790

ABSTRACT

BACKGROUND: The major complication of COVID-19 is hypoxaemic respiratory failure from capillary leak and alveolar oedema. Experimental and early clinical data suggest that the tyrosine-kinase inhibitor imatinib reverses pulmonary capillary leak. METHODS: This randomised, double-blind, placebo-controlled, clinical trial was done at 13 academic and non-academic teaching hospitals in the Netherlands. Hospitalised patients (aged ≥18 years) with COVID-19, as confirmed by an RT-PCR test for SARS-CoV-2, requiring supplemental oxygen to maintain a peripheral oxygen saturation of greater than 94% were eligible. Patients were excluded if they had severe pre-existing pulmonary disease, had pre-existing heart failure, had undergone active treatment of a haematological or non-haematological malignancy in the previous 12 months, had cytopenia, or were receiving concomitant treatment with medication known to strongly interact with imatinib. Patients were randomly assigned (1:1) to receive either oral imatinib, given as a loading dose of 800 mg on day 0 followed by 400 mg daily on days 1-9, or placebo. Randomisation was done with a computer-based clinical data management platform with variable block sizes (containing two, four, or six patients), stratified by study site. The primary outcome was time to discontinuation of mechanical ventilation and supplemental oxygen for more than 48 consecutive hours, while being alive during a 28-day period. Secondary outcomes included safety, mortality at 28 days, and the need for invasive mechanical ventilation. All efficacy and safety analyses were done in all randomised patients who had received at least one dose of study medication (modified intention-to-treat population). This study is registered with the EU Clinical Trials Register (EudraCT 2020-001236-10). FINDINGS: Between March 31, 2020, and Jan 4, 2021, 805 patients were screened, of whom 400 were eligible and randomly assigned to the imatinib group (n=204) or the placebo group (n=196). A total of 385 (96%) patients (median age 64 years [IQR 56-73]) received at least one dose of study medication and were included in the modified intention-to-treat population. Time to discontinuation of ventilation and supplemental oxygen for more than 48 h was not significantly different between the two groups (unadjusted hazard ratio [HR] 0·95 [95% CI 0·76-1·20]). At day 28, 15 (8%) of 197 patients had died in the imatinib group compared with 27 (14%) of 188 patients in the placebo group (unadjusted HR 0·51 [0·27-0·95]). After adjusting for baseline imbalances between the two groups (sex, obesity, diabetes, and cardiovascular disease) the HR for mortality was 0·52 (95% CI 0·26-1·05). The HR for mechanical ventilation in the imatinib group compared with the placebo group was 1·07 (0·63-1·80; p=0·81). The median duration of invasive mechanical ventilation was 7 days (IQR 3-13) in the imatinib group compared with 12 days (6-20) in the placebo group (p=0·0080). 91 (46%) of 197 patients in the imatinib group and 82 (44%) of 188 patients in the placebo group had at least one grade 3 or higher adverse event. The safety evaluation revealed no imatinib-associated adverse events. INTERPRETATION: The study failed to meet its primary outcome, as imatinib did not reduce the time to discontinuation of ventilation and supplemental oxygen for more than 48 consecutive hours in patients with COVID-19 requiring supplemental oxygen. The observed effects on survival (although attenuated after adjustment for baseline imbalances) and duration of mechanical ventilation suggest that imatinib might confer clinical benefit in hospitalised patients with COVID-19, but further studies are required to validate these findings. FUNDING: Amsterdam Medical Center Foundation, Nederlandse Organisatie voor Wetenschappelijk Onderzoek/ZonMW, and the European Union Innovative Medicines Initiative 2.


Subject(s)
COVID-19/therapy , Imatinib Mesylate/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/therapy , Aged , COVID-19/complications , COVID-19/diagnosis , COVID-19/virology , Capillary Permeability/drug effects , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Double-Blind Method , Female , Humans , Imatinib Mesylate/adverse effects , Male , Middle Aged , Netherlands , Oxygen/administration & dosage , Placebos/administration & dosage , Placebos/adverse effects , Protein Kinase Inhibitors/adverse effects , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL